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The aim of this paper is to show the existence of metrics g� = on S n, where g� = is
a perturbation of the standard metric g� 0 , for which the Yamabe problem possesses
a sequence of solutions unbounded in L�(S n). The metrics g� = that we find are of
class C k on S n with (k� n&3

4 ). We also prove some new multiplicity results.
� 2001 Academic Press

1. INTRODUCTION

Let (Mn, g) be a compact Riemannian manifold of dimension n�3 with
scalar curvature Rg . The conformal deformation g$=u4�(n&2)g of g, where
u: M � R is a smooth positive function, has scalar curvature Rg$ related to
Rg by

&2cn 2g u+Rgu=Rg$ u(n+2)�(n&2); cn=2
(n&1)
(n&2)

,

where 2g is the Laplace�Beltrami operator on (M, g); see [5]. The
Yamabe problem consists in finding some metric g$ in the conformal class
[ g] of g such that its scalar curvature Rg$ is a constant function. Choosing

doi:10.1006�jfan.2000.3699, available online at http:��www.idealibrary.com on

210
0022-1236�01 �35.00
Copyright � 2001 by Academic Press
All rights of reproduction in any form reserved.



Rg$ #1 then the problem is equivalent to finding a solution to the equation
on M

&2cn 2g u+Rgu=u(n+2)�(n&2), u>0. (1)

A positive answer to the Yamabe problem has been given by T. Aubin, see
[4, 5], who proved that if (Mn, g), n�6, is not locally conformally flat,
then the Yamabe problem has at least one solution. The locally confor-
mally flat case and dimensions n=3, 4, 5 have been handled by R. Schoen
[18]; see also [20]. For a detailed treatment of this topic see for example
the review [12]. See also [6] and [7] for different proofs.

In [19], R. Schoen announced the following compactness theorem,
giving a detailed proof for the locally conformally flat case.

Theorem 1.1. Let (M, g) be a compact C� manifold not conformally
equivalent to the standard sphere. Then the set of solutions of problem (1) is
compact in C2, :(M).

It is a natural question to see if Theorem 1.1 can be extended to Ck

metrics on manifolds of arbitrary dimension. The main purpose of our
paper is to show that this is not the case. Let g� 0 denote the standard metric
on S n. Our main result is the following.

Theorem 1.2. Let k�2 and n�4k+3. Then there exists a family of
Ck metrics g� = on S n, with &g� =& g� 0&Ck(Sn) � 0 as = � 0, which possess the
following property. For every = small enough, problem (1) on (Sn, g� =) has a
sequence of solutions v i

= with &v i
=&L�(S n) � +� as i � �.

Remark 1.1. It is an open problem to find the sharpest condition on n
and k for which the above non-compactness result is true.

The proof of Theorem 1.2 is based on a sharpening of a construction
introduced in [3]; since this paper is the starting point of our work we
discuss it in more detail. There the authors consider on Sn a suitable class
of metrics g� == g� 0+=h� , perturbations of the standard one, and prove the
existence of two solutions of the Yamabe problem.

Using stereographic coordinates problem (1) for (M, g)=(Sn, g� =) can be
reduced to study

&2cn 2g u+Rgu=u(n+2)�(n&2) in Rn, u>0. (2)

Here g= g= is the metric with components g ij=z&4�(n&2)
0 g� ij , where

z0 : Rn � R is given by

z0(x)=}n
1

(1+|x|2) (n&2)�2 , }n=(4n(n&1)) (n&2)�4.
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Taking g� == g� 0+=h� , it turns out that

gij=$ij+=hij , (3)

for some symmetric matrix hij . The Weyl tensor Wg of the metric g in (3)
can be expanded in powers of = as Wg==W� h+o(=), where W� h depends
only on h. The main result of [3] is the following.

Theorem 1.3. Let n�6, and let h be of the form

h(x)={(x)+|(x&x0), (4)

where {, | are of class C�, with compact support, and with W� { , W� | �0.
Then there exists L� >0 such that for |x0 |�L� there exists =~ >0 for which, for
|=|�=~ , there exist at least two different solutions u1, = and u2, = of problem (2).

Coming back to the original problem on Sn, Theorem 1.3 implies the
existence of at least two solutions for problem (1) on (S n, g� =).

Solutions of (2) can be found as critical points of the functional
f= : E=D1, 2(Rn) � R defined as

f=(u)=|
Rn \cn |{g n|2+

1
2

Rg u2&
1

2*
|u| 2*+ dVg , u # E, (5)

where 2*= 2n
n&2 . The positive solutions of f $0=0 constitute an (n+1)-

dimensional manifold Z given by

Z={z+, !=+&(n&2)�2z0 \x&!
+ + } +>0, ! # Rn=&R+_Rn.

Using the implicit function theorem it is shown, see [1, 2], that there exists
a manifold Z= , perturbation of Z, which is a natural constraint for f= ,
namely if f $= | Z=

(u)=0 for some u # Z= , then also f $=(u)=0. In the case of (5)
it turns out that

f=(z=)=b0+=21(z=)+o(=2); b0= f0(z0),

for some 1 : Z � R. Hence, roughly, critical points of 1 give rise, for =
small, to solutions of (2). If W� �0, then 1 admits some minima and, when
|x0 | is large, 1 inherits a double well structure: this guarantees the
existence of at least two solutions u1, = , u2, = of (2).

In this paper, the above result is extended by showing the existence of
metrics on Sn, perturbations of the standard one, for which problem (1)
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possesses infinitely many distinct solutions, which are not bounded in
L�(Sn). This is done by considering on Rn a metric g= g==$+=h with

h(x)= :
i # N

_i {(x&xi), (6)

where {: Rn � Mn_n is a C � matrix-valued function with compact support,
W� { �0, _i # R, and |xi | � +� as i � �. Using the fact that the metric g
possesses infinitely many ``bumps'', we prove that the function f= |Z=

inherits
infinitely many local minima provided the points xi are sufficiently far away
one from each other. The last step of the proof of Theorem 1.2 consists in
proving that:

(i) the metric g= gives rise to a Ck metric g� = on S n;

(ii) for = small, problem (1) for (Sn, g� =) has a sequence of solutions
whose L� norm blows up.

The method we use can be extended to prove some new multiplicity
results. Let us recall that the existence of multiple solutions for the Yamabe
problem has been studied in [10, 17, and 19]. In [10] multiplicity is
obtained under symmetry assumptions while in [19] the author considers
the specific case of S1(T )_Sn, where S1(T ) is the one dimensional circle
of radius T. He proves that when T � +�, problem (1) possesses an
increasing number of solutions. In [17] the author proves that, given any
manifold of dimension greater or equal than 3 and with positive scalar cur-
vature, then, for some suitable C0 perturbation of the metric, the solutions
of (1) have a multibump structure.

Our multiplicity results are of two types:

(1) we improve Theorem 1.3 by showing the existence of a non-
minimal third solution, see Theorem 5.1;

(2) in the specific of the sphere Sn, we improve the result in [17], by
proving the same result for Ck perturbations of the standard metric,
provided n�4k+3, see Theorem 5.2.

The paper is organized as follows. Section 2 contains some preliminaries.
Section 3 deals with the construction of the natural constraint Z= for f= . In
Section 4, Theorem 1.2 is proved, and in Section 5 some related results are
treated. The Appendix contains some technical proofs.

Notation

We denote by E=D1, 2(Rn) the completion of C �
c (Rn) with respect

to the Dirichlet norm &u&2=�Rn |{u| 2 dx. (u, v) is the standard scalar
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product �Rn {u {v dx, for u, v # E. Given u # E, the function u* # E is
defined as

u*(x)=
1

|x|n&2 u \ x
|x|2+ , x # Rn.

If f # C1(E), we denote by f $ or {f its gradient. We set Crit( f )=[x # E :
f $(x)=0]. If f # C2(E), f "(x) : E � E is the linear operator defined by
duality in the following way

( f "(x) v, w)=D2f (x)[v, w], \v, w # E.

If x # Crit( f ), we denote by m(x, f ) the Morse index of f at x, namely the
maximal dimension of a subspace of E on which f " is negative definite. We
also denote by m*(x, f ) the extended Morse index, the maximal dimension
of a subspace of E on which f " is non-positive definite. For all u # E, + # R
and ! # Rn we set u+, !=+&(n&2)�2u( x&!

+ ). The map ? denotes the stereo-
graphic projection ?: S n=[x # Rn+1 : |x|=1] � Rn through the north pole
PN of Sn, PN=(0, ..., 0, 1), where we identify Rn with [x # Rn+1 : xn+1=0].
The map R: S n � S n is the reflection through the hyperplane [xn+1=0],
i.e. for (x$, xn+1) # S n, it is R(x$, xn+1)=(x$, &xn+1). Given a function
v : Rn � R, we define v>: Rn � R in the following way

v>(x)=v \ x
|x|2+ , x # Rn.

We set Sn=[h: Rn � M(n_n) : hij=hji , \i, j]. In the following, for brevity,
the positive constant C will assume possibly different values from line to
line.

2. PRELIMINARIES

In this paper we consider metrics on Rn possessing ``infinitely many
bumps''. In order to describe precisely such metrics we introduce some
notations.

Let { : Rn � Rn_n be a C � matrix-valued function with compact support
with W� { �0, see formula (13). For A>0, let HA �Sn be defined by

HA ={h: h(x)= :
i # N

_i {(x&xi), |xi&xj |�4 diam(supp {),

i{ j, :
i

|_i |
n�2�A= . (7)
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We will consider the following class of metrics on Rn

gij=(g=) ij=$ij+=hij , (8)

where = is a small parameter and h=hij # HA .

Geometric Preliminaries and Expansion of f=

We recall some formulas given in [3] which will be useful for our com-
putations. It will always be understood that the expansions in = below are
uniform for h # HA . We denote with gij=$ ij+=h ij the coefficients of the
metric g and with gij the elements of the inverse matrix (g&1) ij . The volume
element dVg of the metric g is

dVg=| g|1�2 dx=(1+=1
2 tr h+=2( 1

8(tr h)2& 1
4 tr(h2))+o(=2)) dx. (9)

The Christoffel symbols are given by 1 l
ij=

1
2[Di gkj+Dj gki&Dk gij] gkl.

The components of the Riemann tensor, the Ricci tensor and the scalar
curvature are given respectively by

Rl
kij=D i1 l

jk&D j1 l
ik+1 l

im1 m
jk&1 l

jm1 m
ik ; Rkj=R l

klj ; R=Rkj gkj. (10)

The Weyl tensor Wijkl is defined by

Wijkl =Rijkl&
1

n&2
(Rik gjl&Ril g jk+R jl gik&Rjk gil)

+
R

(n&1)(n&2)
(gjl gik& gjk gil).

For a smooth function u the components of {gu are ({g u)i= gij Dju, so we
have

({gu) i={u(1+O(=)), (11)

and moreover

|{gu|2=|{u|2&= :
i, j

hij Di u Dju+=2 :
i, j, l

hilhlj Di u Dju+o(=2). (12)

Let R= be the scalar curvature of g. There holds, see [3],

R=(x)==R1(x)+=2R2(x)+o(=2),
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where

R1=:
i, j

D2
ij hij&2 tr h,

and

R2 =&2 :
k, j, l

hkj D2
lkhlj+ :

k, j, l

hkj D2
llhkj+ :

k, j, l

hkj D2
jkhll

+ 3
4 :

k, j, l

Dkh jl Dkhjl& :
k, j, l

Dlh jl Dkh jk+ :
k, j, l

Dlh jl Djhkk

& 1
4 :

k, j, l

D jhll Djhkk& 1
2 :

k, j, l

Dj hlk Dl hjk .

Similarly we define the tensor W� ijkl by

Wijkl==W� ijkl+o(=). (13)

By formulas (9) and (11) the functionals u � � |{gu|2 dVg , u � � |u| 2* dVg

are well defined for u # E and h # HA . Moreover, for h # HA , the supports
of the functions {( } &xi) are all disjoint, so there holds Rg=

�|=| Rh , with
Rh # Ln�2(Rn), and &Rh &Ln�2(Rn) uniformly bounded, by the condition
�i |_i |

n�2<A. Hence also the map u � � Rg u2 dvg is well defined. In
conclusion the Euler functional f= : E � R

f=(u)=| \cn |{gu| 2+
1
2

Rgu2&
1

2*
|u|2*+ dVg , g=$+=h, (14)

is well defined, provided h # HA and = is sufficiently small. The functional
f= in (14) admits the following expansion

\u # E, f=(u)= f0(u)+=G1(u)+=2G2(u)+o(=2),

where

f0(u)=| \cn |{u|2&
1

2*
|u|2*+ dx;

G1(u)=| \&cn :
i, j

hij Di u Dju+
1
2

R1u2+\cn |{u|2&
1

2*
|u|2*+ 1

2
tr h+ dx;

G2(u)=| _cn :
i, j, l

hilhlj D iu Dju+
1
2

R2u2+\cn |{u|2&
1

2*
|u|2*+

_\1
8

(tr h)2&
1
4

tr(h2))+
1
2

tr h \1
2

R1u2&cn :
i, j

h ij Diu Dju+& dx.
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We now describe in some detail how problem (1) on Sn can be reduced to
problem (2) on Rn, and vice versa. The stereographic projection ?: S n � Rn

induces an isomorphism @: H1(S n) � E defined by

(@u)(x)=z0(x) u(?&1(x)), u # H1(S n), x # Rn. (15)

In particular the following relations hold for all u, v # H1(S n)

2cn |
Rn

{@u } {@v=|
S n

(2cn {g0
u } {g0

v+uv) dVg0
,

(16)

|
Rn

(@u)2*&1 @v=|
S n

u2*&1v.

If g� is a Riemannian metric on Sn, the Euler functional J : H1(S n) � R
associated to problem (1) is

J(v)=|
S n \cn |{g� v|2+

1
2

Rg� v2&
1

2*
|v|2*+ dVg� , v # H 1(S n).

Using stereographic coordinates on Sn, we define the metric g on Rn to be

gij (x)=z&4�(n&2)
0 (x) g� ij (x) (17)

and, associated to g, the functional f : E � R

f (u)=|
Rn \cn |{g u|2+

1
2

Rg u2&
1

2*
|u|2*+ dVg , u # E.

The functional J is related to f from the equation

J(u)= f (@(u)), u # H1(S n). (18)

From equality (18) one deduces immediately that the functions [@&1z+, !]+, !

are positive solutions of J$0=0.
Let g� R be the pull back of g� through R; see Notation. Then g� R gives rise

to the metric

g>
ij (x) :=z&4�(n&2)

0 (x)(g� R ) ij (x), x # Rn. (19)

It turns out, using straightforward computations, that

:
ij

g>
ij (x) dxi dxj =$ij+:

ij \gij \1
x+&$ij+ \dx i&

2xi �k xk dxk

|x| 2 +
_\dxj&

2x j � l xl dxl

|x|2 + . (20)
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Denoting by f > the functional on E associated to the metric g>, there holds

f (u)= f >(u*), u # E. (21)

It is a simple calculation to check that

(z+, !)*=z+� , !� , with +� =
+

+2+!2 , !� =
!

+2+!2 . (22)

Technical Lemmas

We now collect some technical lemmas, proved in the Appendix, which
will be useful in the remainder of the paper.

Lemma 2.1. Let n�3 and p>0. There exists C>0, depending on p,
such that for all a, b # R

|a+b| p�C( |a| p+|b| p); (23)

| |a+b| 2*&|a|2*&|b|2*|�C( |a|2*&1 |b|+|a| |b|2*&1);

(24)

| |a+b| 2*&2 (a+b)&|a|2*&2 a&|b| 2*&2 b|�C( |a| q |b| r+|a| r |b| q), (25)

where q=(n+2)2�(2n(n&2)), and r=(n+2)�2n. Note that r+q=2*&1 .
Moreover, for n�6

| |a+b| 2*&2&|a|2*&2| �|b|2*&2, \a, b # R. (26)

Lemma 2.2. Let n�3. There exists C>0 such that for all h # HA and for
all |=| sufficiently small there holds

\u # E, f=(u)& f0(u)&=G1(u)&=2G2(u)

=o(=2)(&u&2+&u&2*); (27)

\u # E, & f $=(u)& f $0(u)&=G$1(u)&

�C=2(&u&+&u&(n+2)�(n&2)); (28)

\z # Z, & f $=(z)&�C |=|; (29)

\u # E, & f ="(u)& f "0(u)&�C |=| (1+&u&4�(n&2)); (30)

\u, w # E, | f=(u+w)& f=(u)|

�C &w& (1+&u&(n+2)�(n&2)+&w&(n+2)�(n&2)); (31)
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\u, w # E, & f $=(u+w)& f $=(u)&

�C &w& (1+&u&4�(n&2)+&w&4�(n&2)); (32)

\u, w # E, &G$1(u+w)&G$1(u)&

�C &w& (1+&u&4�(n&2)+&w&4�(n&2)); (33)

For n=3, 4, 5 we have

\u, w # E, & f ="(u+w)& f ="(u)&

�C &w& (&u&(6&n)�(n&2)+&w&(6&n)�(n&2)). (34)

For n�6, the last expression becomes

\u, w # E, & f ="(u+w)& f ="(u)&�C &w&4�(n&2). (35)

3. REDUCTION OF THE FUNCTIONAL

The aim of this section is to construct the natural constraint Z= for f= .
This will provide the existence of solutions to (2) close to solutions of the
unperturbed problem (36) below. The advantage of our construction
respect to [1] and [2] is that it works uniformly for all h # HA and for =
sufficiently small.

The Natural Constraint
Our starting point is the following proposition; see [2, 16].

Proposition 3.1. The unperturbed function f0 possesses and (n+1)-
dimensional manifold Z of critical points, diffeomorphic to R+ _Rn, given by

Z={z+, ! :=+&(n&2)�2z0 \x&!
+ + } +>0, ! # Rn=&R+_Rn,

namely every element z+, ! # Z is a solution of

{&2cn 2u=u(n+2)�(n&2) in Rn;
u>0, u # E.

(36)

Moreover f0 satisfies the following properties

(i) f "0(z)=I&K, where K is a compact operator for every z # Z;

(ii) TzZ=Ker f "0(z) for all z # Z.
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From (i)�(ii) it follows that the restriction of f "0 to (TzZ)= is invertible.
Moreover, denoting by Lz its inverse, there exists C>0 such that

&Lz&�C for all z # Z. (37)

Through a Lyapunov�Schmidt reduction, using Proposition 3.1, we can
reduce problem (2) to a finite dimensional one.

For brevity, we denote by z* # En+1 and orthonormal (n+1)-tuple in
TzZ=span[D+z, D!1

z, ..., D!n
z].

Proposition 3.2. Let n�3. Given A>0, there exist =0 , C>0, such that
for every h # HA there exists a C1 function

(w= , :=)=(w(=, z), :(=, z)): (&=0 , =0)_Z � (E, Rn+1)

which satisfies

(i) w(=, z) is orthogonal to TzZ \z # Z, i.e. (w, z* )=0;

(ii) f $=(z+w(=, z))=:(=, z) z* \z # Z;

(iii) &w(=, z)&�C |=| \z # Z.

From (i)�(ii) it follows that

(iv) the manifold Z==[z+w(=, z) | z # Z] is a natural constraint
for f= .

Proof. The unknown (w, :) satisfying (i) and (ii) can be implicitly
defined by means of the function H: Z_E_Rn+1_R � E_Rn+1

H(z, w, :, =)=\f $=(z+w)&:z*
(w, z* ) + .

Since every z # Z solves f $0(z)=0, it is H(z, 0, 0, 0)=0 and we can write

H(z, w, :, =)=0 �
�H

�(w, :) } (z, 0, 0, 0)

[w, :]+R(z, w, :, =)=0,

where we have set R(z, w, :, =)=H(z, w, :, =)& �H
�(w, :) | (z, 0, 0, 0) [w, :]. From

(37) it is easy to check, see [1], that �H
�(w, :) | (z, 0, 0, 0) is invertible and there

holds

"\ �H
�(w, :) } (z, 0, 0, 0) +

&1

"�C, \z # Z. (38)
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Hence we can write

H(z, w, :, =)=0 � (x, :) = &\ �H
�(w, :)

(z, 0, 0, 0)+
&1

R(z, w, :, =)

:=Fz, =(w, :).

We will prove that, for \ and = sufficiently small, the map Fz, =( , ) is a con-
traction in some B\=[(w, :) # E_Rn+1 : &w&+|:|�\]. First we show
that there exists C>0 such that for all &(w, :)&, &(w$, :$)&�\ small enough

&Fz, =(w, :)&�C( |=|+\min[2, (n+2)�(n&2)]),
(39)

&Fz, =(w$, :$)&Fz, =(w, :)&�C( |=|+\min[1, 4�(n&2)]) &(w, :)&(w$, :$)&.

By (38), condition (39) is equivalent to the following two inequalities

& f $=(z+w)& f "0(z)[w]&

�C( |=|+\min[2, (n+2)�(n&2)]); (40)

&( f $=(z+w)& f "0(z)[w])&( f $=(z+w$)& f "0(z)[w$])&

�C( |=|+\min[1, 4�(n&2)]) &(w, :)&(w$, :$)&. (41)

We now prove (40). Using formulas (29) and (30) we have, since &z& is
bounded

f $=(z+w)& f "0(z)[w]

=( f $=(z+w)& f $=(z)& f ="(z)[w])+ f $=(z)+( f ="(z)& f "0(z))[w]

=|
1

0
( f ="(z+sw)& f ="(z))[w] ds+O(=)+O(=) &w&.

Hence, using (34) and (35), since &z& and &w& are bounded, we deduce that

& f $=(z+w)& f "0(z)[w]&�C( |=|+&w&min[2, (n+2)�(n&2)]+|=| &w&)

�C( |=|+\min[2, (n+2)�(n&2)]),

and (40) is proved. We turn now to (41). There holds

& f $=(z+w)& f $=(z+w$)& f "0(z)[w&w$]&

= } |
1

0
( f ="(z+w+s(w$&w))& f "0(z))[w$&w] ds }

� sup
s # [0, 1]

& f ="(z+w+s(w$&w))& f "0(z)& &w$&w&.
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Using again formulas (30), (34) and (35) we have that

& f ="(z+w$+s(w&w$))& f "0(z)&�C( |=|+\min[2, (n+2)�(n&2)]);

hence also (41) holds. Now that (39) is proved, if C( |=|+\min[2, (n+2)�(n&2)])<\
and if C( |=|+\min[1, 4�(n&2)])<1, then Fz, =(w, :) is a contraction in B\ .
These inequalities are solved, for example, choosing \=2C |=| , for |=|�=0

with =0 sufficiently small. Hence we find a unique solution (w= , :=) satis-
fying &(w= , :=)&�2C |=|. The fact that the map (w, :) is of class C1 is
standard and follows from the Implicit Function Theorem. K

Expansion of f= | Z=

By Proposition 3.2-(iv) problem (2) is solved if one finds critical points
of f= | Z=

. This is done by expanding f= | Z=
in powers of = as stated in Proposi-

tion 3.3 below. We recall that G1 and G2 denote the coefficients of the
expansion in = of f=(u); see Section 2.

In [3] the following lemma is established.

Lemma 3.1. For all z # Z it is G1(z)=0. Hence G$1(z) = TzZ for all
z # Z.

The function w=(z) is estimated in terms of G$1(z) in the following lemma.

Lemma 3.2. Let n�6. The following expansion holds

w(=, z)=&=LzG$1(z)+O( |=| (n+2)�(n&2)). (42)

Proof. We can write f $=(z+w=)=;1+;2+;3+( f "0(z)[w=]+=G$1(z)),
where

;1 =f $=(z+w=)& f $0(z+w=)&=G$1(z+w=);

;2=f $0(z+w=)& f "0(z)[w=];

;3==G$1(z+w=)&=G$1(z).

From (28), since &z+w=& is uniformly bounded, we have that &;1&
=O(=2). There holds

;2=|
1

0
( f "0(z+sw=)& f "0(z))[w=] ds,

so (35) and (iii) in Proposition 3.2 imply &;2&=O( |=| (n+2)�(n&2)). Then,
from (33) it follows also that &;3&=O(=2). Hence we deduce that ;1+
;2+;3=O( |=| (n+2)�(n&2)). Thus the relation f $=(z+w=)=:=z* can be written
as f "0(z)[w=]+=G$1(z)+O( |=| (n+2)�(n&2))=:= z* . Projecting this equation on
(TzZ)= and applying the operator Lz , we obtain (42). K
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We finally furnish the expansion of f= |Z=
.

Proposition 3.3. Let n�6. Given A>0, the following expansion holds,
uniformly in z # Z and in h # HA

f=(z+, !+w=(z+, !))=b0+=21(+, !)+o(=2), (43)

where 1 : R+_Rn � R is defined by

1(+, !)=G2(z+, !)& 1
2 (Lz+, !

G$1(z+, !), G$1(z+, !)). (44)

Proof. We can write f=(z+w=)=#1+#2+#3 , where

#1= f=(z), #2= f $=(z)[w=], #3= f=(w=+z)& f=(z)& f $=(z)[w=].

By (27), since G1|Z #0, we deduce that

#1= f0(z)+=G1(z)+=2G2(z)+o(=2)=b0+=2G2(z)+o(=2).

Turning to #2 , from (28), (42) and f $0(z)=0 we obtain

#2=( f $0(z), w=)+=(G$1(z), w=)+o(=2)=&=2(LzG$1(z), G$1(z))+o(=2).

We now estimate #3 . We can write

#3=|
1

0
( f $=(z+sw=)& f $=(z), w=) ds.

Using (28) we have

#3=|
1

0
(( f $0(z+sw=)& f $0(z))+=(G$1(z+sw=)&G$1(z)), w=) ds+o(=2).

Using (33), (35) and &w=&�C |=|, it follows that

#3 =|
1

0
( f $0(z+sw=)& f $0(z), w=) ds+o(=2)

=|
1

0 \|
1

0
( f "0(z+tsw=)& f "0(z))[sw=] dt+ [w=] ds

+|
1

0 \|
1

0
f "0(z)[sw=] dt+ [w=] ds+o(=2)

= 1
2 f "0(z)[w= , w=]+o(=2).

From the above estimates for #1 , #2 and #3 , we deduce the proposition. K
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Study of the Function 1

We report here the main properties of the function 1, which are obtained
in [3].

Proposition 3.4. The function 1 can be extended to the hyperplane
[+=0] by setting

1(0, !)=0, (45)

and there holds

1(+, !) � 0, as ++|!| � +�. (46)

If n�6, then

�1
�+

(0, !)=0,
�21
�+2 (0, !)=0,

�31
�+3 (0, !)=0, \! # Rn; (47)

moreover

{
lim+ � 0 +&41(+, !)=&�
�41
�+4 (0, !)<0

if W� h(!){0, for n=6;

if W� h(!){0, for n>6.
(48)

4. INFINITELY MANY SOLUTIONS

In this section we prove our main result Theorem 1.2. We consider on Rn

metrics g of the form (8). Since these metrics possess infinitely many
``bumps'', we expect that the function f= | Z=

inherits infinitely many local
minima when the points xi are sufficiently far away one from each other.

Let f i
= be the Euler functional corresponding to the metric gi (x)=

gi
=(x)=$+=_i{(x&x i). Since _i{( } &x i) # HA , the construction of

Proposition 3.2 can be performed also for f i
= . We denote by Zi=[z+

wi
= | z # Z] the corresponding natural constraint. We will often set for

brevity

Ai :=supp {( } &xi); z i
= :=z+w i

= .
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Let 1 { denote the function as in (44) associated to the metric $(x)+
={(x). By Proposition 3.4, the function 1 { possesses some negative mini-
mum and tends to zero at the boundary of R+_Rn. Hence we can find a
compact set K of R+ _Rn such that

[ y # R+ _Rn : 1 {( y)� 1
2 min 1 {]�K.

In the following this compact set K will be kept fixed.
If (+, !) # K+(0, xi), then the functions z+, !+wi

= satisfies an uniform
decay estimate. This is stated precisely in the following lemma.

Lemma 4.1. Let |=|�=0 . There exist C>0, R>1 such that for every i
and for every (+, !) # K+(0, xi) there holds

|z+, !+w i
= | (x)�

C
|x&x i |

n&2 ,

(49)

|{(z+, !+w i
=)| (x)�

C
|x&x i |

n&1 ; |x&xi |�R.

Proof. We can suppose without loss of generality that xi=0 and the
support of { is contained in B1=[x # Rn : |x|�1].

The function z i
= satisfies {f i

=(z i
=)=: i

=z* ; hence it solves the equation

&2cn 2(z i
=)&|z i

= |2*&2z i
==&: i

= 2z* , in Rn"B1 .

Performing the transformation (see the Notation for the definition of the
map u � u*)

z i
=(x) � u i

=(x) :=+(n&2)�2(z i
=)* (+x),

one easily verifies that the function u i
= solves

&2u i
=(x)=|u i

= | 2*&2 (x) u i
=(x)++(n+2)�2qz(+x), in B1 , (50)

where qz=&: i
=(z) 2(z* *). Since (+1 , !1) belongs to the fixed compact set K,

the norm

&qz&C3(B1) is uniformly bounded for (+1 , !1) # K. (51)

Moreover, since wi
= is a continuous function of z, it turns out that

`+ = sup
(+, !) # K

|
B1

|{u i
= |2 � 0,

(52)

'+= sup
(+, !) # K

|
B1

|u i
= |2* � 0, as + � 0.
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Under conditions (50), (51) and (52), the arguments in the proof of
Proposition 1.1 in [13] imply that for some +=+0 sufficiently small it is
&u i

=&C1(B1�2)�C uniformly in (+1 , !1) # K. From this one can easily deduce
that

z i
=(x)�

C
+(n&2)�2

0

1
|x| n&2 , for |x|�

2
+0

; (+1 , !1) # K,

which is the first inequality in (49). The second inequality follows in the
same way from the boundedness of &u i

= &C 1(B1�2) . K

Lemma 4.2. There exist C>0, =1>0 such that for |=|�=1 there holds

&w=&w i
=&�C &{f=(z+w i

=)&{f i
=(z+w i

=)&. (53)

Proof. Let us consider the function

H� : Z_E_Rn+1 � E_Rn+1_R

with components H� 1 # E and H� 2 # Rn+1 given by

H� 1(z, w, :, =)={f=(z+w i
=+w)&(: i

=+:) z* ,

H� 2(z, w, :, =)=(w, z* ).

We have

H� (z, w, :, =)=0

� H� (z, 0, 0, =)+
�H�

�(w, :) } (z, 0, 0, =)

[w, :]+R� (z, w, :, =)=0,

where R� (z, w, :, =)=H� (z, w, :, =)&H� (z, 0, 0, =)& �H�
�(w, :) | (z, 0, 0, =) [w, :].

It is easy to see that for |=| small enough there holds

}\ �H�
�(w, :) } (z, 0, 0, =)+

&1

}�C \z # Z.

Moreover we have

H� (z, w, :, =)=0 � (w, :)=F� =, z(w, :),

where

F� =, z(w, :) :=&\ �H�
�(w, :) } (z, 0, 0, =)+

&1

(H� (z, 0, 0, =)+R� (z, w, :, =)).
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We claim that the following two estimates hold. For all &(w, :)&,
&(w$, :$)&�\ small enough

&F� =, z(w, :)&�C &{f=(z+w i
=)&{f i

=(z+w i
=)&

+C\(n+2)�(n&2), (54)

&F� =, z(w, :)&F� =, z(w$, :$)&�C\4�(n&2) &w$&w&. (55)

Let us prove (54). For all (w, :) # B\

&F� =, z(w, :)&�C &H� (z, 0, 0, =)&+C &R� (z, w, :, =)&. (56)

We have, using the same arguments of Proposition 3.2,

&R� (=, z, w, :)&="H� (z, w, :, =)&H� (z, 0, 0, =)&
�H�

�(w, :) } (z, 0, 0, =)

[w, :]"
=&{f=(z+w i

=+w)&{f=(z+w i
=)&D2f=(z+w i

=)[w]&

�C &w&(n+2)�(n&2).

Since H� (z, 0, 0, =)={f=(z+w i
=)&{f i

=(z+w i
=), (54) follows from (56). Let us

turn to (55). For all (w, :), (w$, :$) # B\ it is

&F� =, z(w, :)&F� =, z(w$, :$)&

="\ �H�
�(w, :) } (z, 0, 0, =)+

&1

(R� (z, w, :, =)&R� (z, w$, :$, =))"
�C "|

1

0
( f=)" (z+w i

=+w$+s(w&w$))&( f=)" (z+w i
=) ds" &w$&w&

�C\2*&2 &w$&w&,

so (55) holds true. Now, arguing as in Proposition 3.2, we deduce that
there exists a unique (wD

= , :D
= ) such that

(i) (wD
= , z* )=0;

(ii) {f=(z+w i
=+wD

= )=(: i
=+:D

= ) z* ;

(iii) &wD
= &�C &{f=(z+w i

=)&{f i
=(z+w i

=)& for = sufficiently small.

The couple (w i
=+wD

= , : i
=+:D

= ) satisfies (i)�(iv) in Proposition 3.2; hence
by uniqueness it must be w==w i

=+wD
= . By (iii), inequality (53) follows. K

In the next lemma we estimate the quantity &{f=(z i 0
= )&{f i0

= (z i0
= )& with

respect to =, [_i]i , and [xi] i .
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Lemma 4.3. There exist C>0, L1>0 such that if |xi0
&x i |�L1 for all

i{i0 then

&{f=(z+, !+w i0
= )&{f i0

= (z+, !+w i 0
= )&�C |=| :

i{i0

_i

|x i&x i0
|n&2 , (57)

for all (+, !) # (0, xi 0
)+K.

Proof. Since the metric g i 0
= is flat on A i for i{i0 , for v # E there holds

|({f=(z i0
= )&{f i0

= (z i0
= ), v)|

= } :
i{i0

|
Ai

2cn {gz i0
= } {g v+Rgz i0

= v&|z i 0
= |2*&2 z i 0

= v dVg

& :
i{i 0

|
Ai

2cn {z i0
= } {v&|z i0

= | 2*&2 z i0
= v dx }.

Using the Ho� lder inequality on each Ai we get

|({f=(z i 0
= )&{f i0

= (z i0
= ), v)|

�C |=| :
i{i0

_i |
Ai

|{z i0
= | |{v|+|z i 0

= | |v|+|z i0
= |2*&1 |v| dx.

By Lemma 4.1 we know that for (+, !) # (0, xi0
)+K

|z i0
= (x)|�

C
|x&x i0

|n&2 ,

|{z i0
= (x)|�

C
|x&x i0

|n&1 for |x&x i0
|�R.

Hence we deduce, using the Ho� lder and the Sobolev inequalities, if
|xi0

&xi |�L1 , i{i0 , with L1�R, there holds

|({f=(z i0
= )&{f i0

= (z i0
= ), v)|

�C |=| &v& :
i{i 0

_i \ 1
|xi&x i0

| n&1+
1

|xi&xi0
| n&2+

1
|xi&xi0

|n+2+ .

This concludes the proof. K

In the next proposition we compare f= |Z=
with the reduced function

f i0
= | Zi 0

corresponding to one-bump metrics.
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Proposition 4.1. Set

Qi 0
= f=(z+, !+w=)& f i0

= (z+, !+w i0
= ).

Then, if |xi0
&xi |�L1 for all i{i0 , for all (+, !) # (0, xi 0

)+K and for all
|=|<=1 there holds

|Qi0
|�C |=| \ :

i{i0

1
|xi&xi0

|n+
(n&2)�n

. (58)

Proof. We have by (31), (53) and (57)

|Qi0
|=| f=(z+w=)& f i0

= (z i0
= )|

�| f=(z+w=)& f=(z+w i0
= )|+| f=(z i 0

= )& f i0
= (z i0

= )|

�C &w=&w i 0
= &+| f=(z i0

= )& f i 0
= (z i0

= )|

�C &{f=(z i0
= )&{f i 0

= (z i0
= )&+| f=(z i 0

= )& f i 0
= (z i0

= )|

�C |=| :
i{i0

_i

|xi&xi0
| n&2+| f=(z i 0

= )& f i0
= (z i0

= )|. (59)

Arguing as in Lemma 4.3 we deduce

| f=(z i0
= )& f i0

= (z i0
= )|= :

i{i 0

|
Ai

cn |{g(z i0
= )| 2+Rg(z i0

= )2&
1

2*
|z i 0

= |2* dVg

& :
i{i 0

|
Ai

cn |{(z i0
= )|2&

1
2*

|z i0
= | 2* dx

�C |=| :
i{i 0

_i |
Ai

|{(z i0
= )|2+|z i 0

= |2+|z i0
= |2* dx.

Then, using the fact that |xi&xi 0
|�L1 ,

| f=(z i0
= )& f i0

= (z i 0
= )|

�C |=| :
i{i0

_i \ 1
|x i&x i0

|2(n&1)+
1

|x i&x i0
|2(n&2)+

1
|xi&xi 0

|2n+ .

The last inequality and (59) imply that |Qi 0
|�C |=| � i{i0

_ i �|xi&x i0
|n&2.

Applying the Ho� lder inequality and taking into account that �i |_i |
n�2<A,

(58) follows. K
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Lemma 4.4. Let :>1, #>1. There exists a constant C>0 depending
only on : and #, such that

:
i{i0

1
|i:&i:

0 | #tC
1

i (:&1) #
0

, i0 � +�.

Proof. For i0 large enough there holds

:
i<i0

1
|i:&i:

0 | #t|
(i0&1)

0

dx
(i:

0&x:)# ,

:
i>i0

1
|i:&i:

0 | #t|
�

(i0+1)

dx
(x:&i:

0)# .

Hence we are reduced to estimate the above two integrals. Let us start with
the first one: using the change of variables i0 y=x, we deduce that

|
(i0&1)

0

dx
(i:

0&x:)#=i0 |
1&(1�i0)

0

dy
i:#
0 (1& y:)#

=
1

i:#&1
0

|
1&(1�i0)

0

dy
(1& y:)# .

Since (1&y:)#
tC(1&y)#, for y close to 1 it follows that �1&(1�i 0)

0 dy�(1&y:)#

tCi#&1
0 . Hence it turns out that � (i 0&1)

0 dx�(i:
0&x:)#

tC(1�i (:&1) #
0 ). An

analogous estimate holds for the other integral ��
(i0+1) dx�(x:&i:

0)#. This
concludes the proof. K

4.1. Proof of Theorem 1.2

Existence of infinitely many solutions. Fix a # Rn with |a|=1, and let h
be of the form (6) with _i=i&; and xi=Di:a. We choose

D=
C0

|=|1�(n&2) ; :>4k+1; 2:k<;<2:k+
:&(4k+1)

2
, (60)

where C0 is a constant to be fixed later. With the above choice of _i there
holds �+�

i+1 |_ i |
n�2<+�, since ;>1> 2

n . Since also :>1, we have
infi{ j |x i&xj |>4 diam(supp {) for i, j large enough. Hence, if we take
_i=0 for i sufficiently small, then h belongs to HA .

From the expansion in (43) we know that

f i0
= (z i0

= )=b0+=2_2
i 1 {( } &xi0

)(+, !)+o(=2_2
i ), z i0

= =z+, !+w i 0
= ,
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and so f i0
= |Zi 0 attains absolute minimum in a point z~ i0

= =z+~ , !� +w i0
= with

(+~ , !� ) # (0, xi 0
)+K. Moreover there exists a smooth open set U�K such

that for _i 0
sufficiently small

min
(+, !) # �U

f i 0
= (z+, !+w i 0

= )& f i0
= (z~ i 0

= )� 1
4 d{_2

i0
=2; d{=|min 1 {|. (61)

We assume i0 to be so large that mini{i0
|xi0

&x i |�L1 , so (58) holds.
Hence we have that

|Qi0
|�

C |=|
D(n&2) \ :

i{i0

1
|i:&i0

:|n+
(n&2)�n

.

So, by Lemma 4.4, for i0 sufficiently large there holds

|Qi0
|�

C |=|
D(n&2)

1
i (:&1)(n&2)

0

. (62)

By our choice of _i and by (61), in order to find for = small a minimum
of f= |Z=

near z~ i0
= , it is sufficient that

|Qi0
|� 1

8 d{ i0
&2; |=|2. (63)

Taking into account (62), inequality (63) is satisfied, for i0 large enough,
when D=C0 �( |=|1�(n&2)), C0 is sufficiently large, and

(:&1)(n&2)�2;. (64)

We have then proved that if (64) holds, then for all i0 large enough and =
small enough f=(z+, !+w=) attains a minimum (+~ i0

, !� i 0
) # (0, x i0

)+K. Hence
there are infinitely many distinct solutions v i

= of (1) on (Sn, g� =).

Regularity of the metrics. Now we want to determine the regularity of
g� = on S n. Clearly g� = is of class C� on Sn"PN . Moreover, the regularity of
g� = at PN is the same of (g� =)R at the south pole PS and so, recalling
formula (19), it is the same of g>

= in 0. From Eq. (20), it follows that the
functions g>

ij(x) are of the form

g>
ij(x)=$ij+:

kj

4ijkl \ x
|x|+\gkl \1

x+&$kl + , (65)

where 4ijkl are smooth angular functions. Set N i
==&(g i

=)
>&$&C k . Since

(g i
=)

>&$ has support in Ai :=[x # Rn : x�|x| 2 # Ai], and since diam(Ai)t

|xi |
&2, one can easily check from (65) that N i

= can be estimated as

N i
=�C |=| |_i | |xi |

2k�C |=|1&(2k�(n&2)) i2:k&;.
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Let g>
=, j be the metric constituted by the first j bumps of g>

= . Hence, since
all the bumps of g>

= have disjoint support, there holds

&g>
=, j& g>

=, l&Ck(R n) � sup
i= j+1, ..., l

N i
=

�C |=|1&(2k�(n&2)) sup
i= j+1, ..., l

i2:k&;; j<l.

So, if 2:k&;<0, the sequence g>
=, j is Cauchy in Ck(B1), and hence g� = is

also of class Ck. If moreover there holds 1& 2k
n&2>0, then &g� =& g� 0&Ck � 0

when = � 0. The three inequalities we are requiring, namely (64) and

;>2:k, n&2>2k

are satisfied with n�4k+3 and our choices in (60). We have proved that
g� = are of class C k and that &g� =& g� 0&Ck(Sn) tends to 0 as = tends to 0.

Since the solutions u i
= of (2) are close in E to some z+~ i , !� i

with (+~ i , !� i) #
(0, xi)+K, the solutions v i

==@&1u i
= of (1) on S n are close in H 1(Sn) to

@&1z+~ i , !� i
. From the fact that the functions @&1z+~ i , !� i

blow-up at PN as
i � +�, one can deduce that &v i

=&L�(S n) � +� as i � +�. Standard
regularity arguments, see [9], imply that the weak solutions v i

= are indeed
of class Ck on S n. From the fact that &v i

=&@&1z+~ i , !� i
&H1(S n) is small and from

the maximum principle, it is also easy to check that the solutions we find
are positive. This concludes the proof.

5. FURTHER RESULTS

In this section we prove some multiplicity results, which are conse-
quences of the method applied above.

We consider on Sn a smooth bilinear and symmetric form h� , and the
metric g� = g� = given by

g� == g� 0+=h� . (66)

Let g be the metric on Rn associated to g� by formula (17). Using the
isometry @, it is possible to prove that the Euler function f= : E � R corre-
sponding to g is well defined, and one can repeat all the arguments of
Section 3. Let again Z==[z+w=] denote the natural constraint for f= : to
study f= |Z=

, for brevity we define .=(+, !): R+_Rn � R as

.=(+, !)= f=(z+, !+w=(z+, !)).

We have the following proposition, proved in the Appendix.
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Proposition 5.1. Suppose n�3. Let h� be a smooth bilinear and sym-
metric from on Sn, and for = small, let g� = be given by (66). Then .= can be
extended by continuity to [+=0] by setting

.=(0, !)=b0 , ! # Rn. (67)

Moreover there holds

lim
++|!| � +�

.=(+, !)=b0 . (68)

As a first application of Proposition 5.1 we improve Theorem 1.3.

Theorem 5.1. Under the same assumptions of Theorem 1.3 there exist L� ,
=̂>0 such that, for |x0 |�L� and for |=|�=̂, problem (2) admits a third solu-
tion u3, = . In the non-degenerate case this solution has Morse index
m(u3, = , f=)�2, or in general extended Morse index m*(u3, = , f=)�2.

Proof. In [3] it is proved that for |x0 |�L� large enough and for |=|� =̂
small enough, .= possesses two points e0 , e1 of local minimum with
.=(e0), .=(e1)<b0 . These minima give rise to two solutions u1, = and u2, = of
problem (2). Now three cases can occur. The first one is that supR+_R n .=

>b0 , the second is that .=�b0 and .=(+, !)=b0 for some (+, !) #
R+ _Rn, and the third case is that .=(+, !)<b0 for all (+, !) # R+ _Rn. In
the first two cases .= possesses an interior maximum, while in the third
case, by the mountain pass Theorem, there exists a critical level c=>
max[.=(e0), .=(e1)], c=<b0 . In each case there is a third solution u3, = to
problem (2). In the non-degenerate case we show that m(u3, = , f=)�2.

The operator f ="(u3, =) is negative definite on the one-dimensional sub-
space [tu3, = , t # R], so there it is m(u3, = , f=)�1. Suppose by contradiction
that m(u3, = , f=)=1.Then, since we are in the non-degenerate case, f ="(u3, =)
would be positive definite on the finite dimensional space Tu3, =

Z= , and u3, =

would be a strict minimum for f= |Z=
. Clearly this is a contradiction when

u3, = is an interior maximum. When u3, = is a mountain pass critical point,
the result follows from [11]. In the degenerate case, the same argument
shows that m*(u3, = , f=)�2. K

Remark 5.1. As a byproduct of Proposition 5.1, we can immediately
deduce that .= possesses a critical point, and hence problem (1) admits a
solution for g= g� = . We point out that, in the present very specific situation,
we do not need to distinguish between different dimensions and between
the locally conformally flat or non-locally conformally flat case.

Our last result deals with the existence of multibump solutions as in
[17]. Given an integer l>0, and l-bump solution of (1) is a function u
satisfying (1) and such that ut�l

i=1 z+i , !i
.
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Theorem 5.2. For all integers l>0, there exists =0>0 such that for all
= with 0<=<=0 , there exists a metric g� = on S n for which problem (1)
possesses l-bump solutions. If k�2 and n�4k+3 then g� = can be chosen in
such a way that &g� =& g� 0&C k(Sn) � 0 as = � 0.

For the sake of brevity we will only outline the main steps of the
arguments, referring to [15] for more details and complete proofs.

Step 1. We fix l # N and we take x1 , ..., xl # Rn and g= of the form

g=(x)=$ij+= :
l

i=1

{(x&xi), in Rn.

The multibump solution is found near the following set of functions

Zl=[z1+ } } } +zl : zi # Z],

obtained by ``gluing'' together l elements of Z. We show that

& f $=(z)&=O(max
i{ j

|xi&xj |
&(n+2)(n&2)�2n+=2), z # Zl.

Step 2. Following the arguments of [7], we use the last estimate to
prove the existence of a manifold

Zl
= =[z+w : z # Zl], &w&=O(& f $=(z)&),

which is a natural constraint for f= . Moreover, if turns out that

f=(z+w)=lb0+=2 :
l

i=1

1(zi)+R,

where

|R|=O(= max
i{ j

|xi&xj |
&(n+2)(n&2)�2n+=2). (69)

Step 3. Each of the functions 1(zi) attains a minimum at zi=z+i , !i
with

+i bounded above and below, and with !i close to x i . By means of Eq. (69),
we prove that, if we choose maxi{ j |x i&xj |

&(n&2)
t=2, these minima

persist, and we find a critical point of f= on Zl
= . Furthermore, the metric g=

gives rise to a metric g� = on Sn with g� = � g� 0 in Ck.
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6. APPENDIX

Proof of Technical Lemmas

Proof of Lemma 2.1. Equation (23) is a trivial consequence of the sub-
additivity of the function t � |t| p for 0<p�1, and of the convexity of
t � |t| p for p>1. When n�6, then the number 2*&2= 4

(n&2) is greater
than 0 and smaller or equal to 1, so Eq. (26) is also a consequence of the
subadditivity of t � |t| p, with 0<p�1. Turning to (25) it is sufficient, by
homogeneity, to prove that for every t # R there holds

| |1+t| p&1 (1+t)&|t| p&1 t&1|�C( |t| r+|t| q). (70)

Equation (70) is satisfied near t=0 for every C>0, since 0<r<1. At
infinity, the left-hand side goes to +� as |t| p&1, while the right hand side
goes to +� as |t|q, since q>r. Moreover p&1<q, so (70) holds for C
sufficiently large and for all t. Inequality (24) can be obtained reasoning in
the same way. K

Proof of Lemma 2.2. We start proving (35). Given two functions v1 ,
v2 # E, there holds

|( f ="(u+w)& f ="(u))[v1 , v2]|

=(2*&1) } | ( |u+w|2*&2&|u|2*&2) v1v2 dVg }
�(2*&1)(1+O(=)) } | | |u+w| 2*&2&|u|2*&2| |v1| |v2 | dx }.

Using the Ho� lder and the Sobolev inequalities we deduce that

| | |u+w|2*&2&|u| 2*&2| |v1| |v2 | dx

�C \| | |u+w|2*&2&|u|2*&2| n�2+
2�n

&v1& &v2&.

For n�6, using inequality (26) with a=u(x), b=w(x), we deduce that
| |u+w|2*&2&|u|2*&2| n�2

�C |w|2*, so (35) holds.
We now prove (30). Taking into account formulas (9) and (11), we have

that

f ="(u)[v1 , v2]=| ({v1 } {v2(1+O(=))+Rgv1v2&(2*&1) |u|2*&2 v1v2)

_dx(1+O(=)).
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From the Ho� lder and the Sobolev inequalities, and using the fact that the
support of Rg is compact, it follows that

( f ="(u)& f "0(u))[v1 , v2]=O(=)(1+O(=)+&u&4�(n&2)) &v1& &v2&,

and (30) is proved.
Let us turn to (32). For every v # E there holds

( f $=(u+w)& f $=(u), v)=| (2cn {gw } {gv+Rgwv

+|u+w|2*&2 (u+w) v&|u| 2*&2 uv) dVg . (71)

This implies that

& f $=(u+w)& f $=(u)&�O(1) &w& (1+O(=))

+\| | |u+w|2*&2 (u+w)&|u|2*&2 u| 2n�(n+2)+
(n+2)�2n

(1+O(=)).

Since

|u+w|2*&2 (u+w)&|u| 2*&2 u=(2*&1) |
1

0
|u+sw| 2*&2 w ds,

setting y(x)=(2*&1) �1
0 |u+sw|2*&2 ds, we have |u+w|2*&2 (u+w)&

|u|2*&2 u= y(x) w(x). Hence there holds

\| | |u+w|2*&2 (u+w)&|u|2*&2 u| 2n�(n+2)+
(n+2)�2n

�C &w& \| | y|n�2+
2�n

.

Using again the Ho� lder inequality, we have that | y|�(�1
0 |u+sw|2* ds)2�n.

So from the Fubini theorem

| | y| n�2 dx�| } |
1

0
|u+sw|2* ds } dx=|

1

0 \| |u+sw|2* dx+ ds

� sup
s # [0, 1]

&u+sw&2*
2* ,

Taking into account the Sobolev inequality, it turns out that, by (23),

\| | y|n�2+
2�n

� sup
s # [0, 1]

&u+sw&4�(n&2)�C(&u&4�(n&2)+&w&4�(n&2)).

In conclusion we obtain (32).
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We now prove (28). Given v # E, we have

( f $=(u), v)=| (2cn {gu } {g v+Rguv&|u|2*&2 uv) dVg .

Taking into account formulas (9) and (11), we deduce

( f $=(u), v)=| \2cn {u } {v&= :
ij

hij Diu Djv+O(=2) |{u| |{v|

+=R1uv+O(=2) |u| |v|&|u|2*&2 uv+ (1+ 1
2 = tr h+O(=2)) dx.

Expanding the last expression in =, and O(=2), and using again the Ho� lder
and the Sobolev inequality, we obtain (28). Formulas (27), (29), (31), (33)
and (34) can be obtained with similar computations. K

Proof of Proposition 5.1. Let f $
= : E � R be the Euler functional (5)

corresponding to the metric g$(x)= g($x), $>0. For all u # E there holds

f $
=(u)= f=($&(n&2)�2u($&1x))= f=(u$, 0) (72)

and inversely

f=(u)= f $
=($(n&2)�2u($x)).

The map T$ : E � E defined by T$(u) :=u$, 0 is a linear isometry and by
(72) f $

= is nothing but f $
=(u)= f= b T$ . In particular for all u # E it is

{f=(u)=T$ {f $
=(T &1

$ u). (73)

Since f $
= is related to f= by the isometry T$ , one can apply without changes

the construction of Section 3 to f $
= . Hence there exists w$

= # (Tz0
Z)= such

that

{f $
= (z0+w$

= ) # Tz0
Z.

Since {f=(z$, 0+w=(z$, 0)) # Tz$, 0Z by uniqueness and by (73) it turns out
that

w$
= (x)=$(n&2)�2w=(z$, 0)($x). (74)

We consider also the functional

f 0
=(u)=|

Rn \cn :
i, j

gij (0) Di u Dju&
1

2*
|u|2*+ dVg(0) ,
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which corresponds to the metric in Rn which is identically equal to g(0).
With respect to some orthonormal system of coordinates the symmetric
matrix gij (0) has the diagonal form (*1 , ..., *n), where for brevity we have
omitted the dependence of *i on =. We note that the numbers *i are positive
since gij (0) is close to the identity matrix.

Since f 0
= is a perturbation of f0 , reasoning as above we find an unique

w0
= # (Tz0

Z)= satisfying {f 0
=(z0+w0

= ) # Tz0
Z. We note that, by symmetry

reasons, w0
= must be an even function in Rn. In the next Lemma we prove

some further properties of w0
= . Define

z~ 0(x)=z0 \ x1

- *1

, ...,
xn

- *n
+ .

Lemma 6.1. The function w0
= satisfies {f 0

=(z0+w0
= )=0. Moreover there

holds

w0
= =T+z~ 0&z0 , for some +>0, and f 0

=(z0+w0
= )=b0 .

Proof. The functional f 0
= is invariant under the transformations u �

u+, ! , for all +>0 and ! # Rn. From this fact one can deduce that
f 0

=(z+, !+w0
=(z+, !)) is independent of +, !. Hence, by Proposition 3.2(iv), the

points z+, !+w0
= (z+, !) are all critical for f 0

= , and in particular it is
{f 0

= (z0+w0
= )=0.

The positive solutions u of {f 0
=(u)=0 can be completely classified. In

fact, using the coordinates introduced above, a critical point u of f 0
= is a

solution of the problem

&2cn :
i

*i D2
iiu=u2*&1, u # E.

Using the change of variables xi=*i yi , and taking into account that the
only solutions of &2u=u2*&1 are of the form z+, ! , one can deduce that
z0+w0

= =T+z~ 0 , for some +>0 (here we have used the fact that w0
= must be

an even function).
Now we prove that f 0

= (z0+w0
= )=b0 : in fact there holds

f 0
= (T+z~ 0)=f 0

= (z~ 0)

=| \cn :
i

*i
1
*i

|Diz0 |2&
1

2*
|z0 |2*+ \ x1

- *1

, ...,
xn

- *n
+ |6i*i |

1�2 dx.

Using again the change of variables xi=*i yi , we obtain the result. The
proof of the Lemma is complete. K
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Proof of Proposition 5.1. For all u # E there holds

lim
$ � 0

&{f $
= (u)&{f 0

= (u)&=0; (75)

lim
$ � 0

f $
= (u)=f 0

= (u). (76)

Equations (75) and (76) are easy to verify, for example starting with u #
C�

c (Rn) and proceeding by density. Furthermore, arguing as in Lemma 4.2,
one can deduce that for some C>0 it is &w$

= &w0
= &�C &{f $

=(z~ 0)&
{f 0

= (z~ 0)&=C &{f $
= (z~ 0)&. Hence by (75), applied with u=T+z~ 0 , and by

Lemma 6.1, it turns out that

w$
= � w0

= =z~ 0&z0 as $ � 0. (77)

Using (72) and (73) we deduce that

.=($, 0)= f=(z$, 0+w=(z$, 0))= f $
= (z0+w$

= ).

We can write

f $
= (z0+w$

= )& f 0
= (z0+w0

= )

=( f $
=(z0+w$

= )& f $
=(z0+w0

= ))+( f $
=(z0+w0

= )& f 0
=(z0+w0

= )).

There holds

f $
=(z0+w$

= )& f $
=(z0+w0

= )= f=(z$, 0+T$w$
= )& f=(z$, 0+T$w0

= ),

and from (31) it follows that

| f=(z$, 0+T$w$
= )& f=(z$, 0+T$w0

= )|�C &T$w$
= &T$ w0

= &.

By (77), since T$ is an isometry, it is f $
=(z0+w$

= )& f $
=(z0+w0

= ) � 0 as $ � 0.
From (76) we deduce that also f $

=(z0+w0
= )& f 0

=(z0+w0
= ) � 0 as $ � 0.

Hence f $
= (z0+w$

= )& f 0
=(z0+w0

= ) � 0 as $ � 0. By means of the last com-
putations we have proved that

lim
$ � 0

.=($, !)=b0 , !=0. (78)

Actually the above reasoning can be performed uniformly if ! varies in a
fixed compact set of Rn; this implies (67). Equation (68) can be proved
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using the Kelvin transform. In fact, since the same computations can be
repeated in the same way for f >

= , one has, by formula (22)

lim
++|!| � +�

.=(+, !)= lim
(+� , !� ) � 0

.>
= (u� , !� )=0.

This concludes the proof. K
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